An Ontology Design Pattern for supporting behaviour arbitration in cognitive agents

نویسندگان

  • Luigi Asprino
  • Andrea Giovanni Nuzzolese
  • Alessandro Russo
  • Aldo Gangemi
  • Valentina Presutti
  • Stefano Nolfi
چکیده

In this paper we present an Ontology Design Pattern for the definition of situation-driven behaviour selection and arbitration models for cognitive agents. The proposed pattern relies on the descriptions and situations ontology pattern, combined with a frame-based representation scheme. Inspired by the affordance theory and behaviour-based robotics principles, our reference model enables the definition of weighted relationships, or affordances, between situations (representing agent’s perception of the environmental and social context) and agent’s functional and behavioral abilities. These weighted links serve as a basis for supporting runtime task selection and arbitration policies, to dynamically and contextually select agent’s behaviour. The pattern is at the heart of the behaviour-based cognitive approach adopted in the EU H2020 MARIO project for the design of an autonomous service robot (i.e., the cognitive agent) to support elderly people with cognitive impairments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Public Transport Ontology for Passenger Information Retrieval

Passenger information aims at improving the user-friendliness of public transport systems while influencing passenger route choices to satisfy transit user’s travel requirements. The integration of transit information from multiple agencies is a major challenge in implementation of multi-modal passenger information systems. The problem of information sharing is further compounded by the multi-l...

متن کامل

Multilayered Evolutionary Architecture for Behaviour Arbitration in Cognitive Agents

In this work, an hybrid, self-configurable, multilayered and evolutionary subsumption architecture for cognitive agents is developed. Each layer of the multilayered architecture is modeled by one different Machine Learning System (MLS) based on bio-inspired techniques such as Extended Classifier Systems (XCS), Artificial Immune Systems (AIS), Neuro Connectionist Q-Learning (NQL) and Learning Cl...

متن کامل

CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents

For a software information agent, operating on behalf of a human owner and belonging to a community of agents, the choice of communicating or not with another agent becomes a decision to take, since communication generally implies a cost. Since these agents often operate as recommender systems, on the basis of dynamic recognition of their human owners’ behaviour and by generally using hybrid ma...

متن کامل

Bio-inspired Cognitive Architecture for Adaptive Agents based on an Evolutionary Approach

In this work, an hybrid, self-configurable, multilayered and evolutionary subsumption architecture for cognitive agents is developed. Each layer of the multilayered architecture is modeled by one different Reinforcement Machine Learning System (RMLS) based on bio-inspired techniques. In this research an evolutionary mechanism based on Gene Expression Programming to self-configure the behaviour ...

متن کامل

Analysis of Emergent Properties in a Hybrid Bio-inspired Architecture for Cognitive Agents

In this work, a hybrid, self-configurable, multilayered and evolutionary architecture for cognitive agents is developed. Each layer of the subsumption architecture is modeled by one different Machine Learning System MLS based on bio-inspired techniques. In this research an evolutionary mechanism supported on Gene Expression Programming to self-configure the behaviour arbitration between layers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016